A319855 Minimum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
0, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 5, 1, 7, 4, 8, 3, 6, 5, 9, 2, 6, 6, 6, 4, 10, 5, 11, 1, 7, 7, 7, 4, 12, 8, 8, 3, 13, 6, 14, 5, 7, 9, 15, 2, 8, 6, 9, 6, 16, 6, 8, 4, 10, 10, 17, 5, 18, 11, 8, 1, 9, 7, 19, 7, 11, 7, 20, 4, 21, 12, 8, 8, 9, 8, 22, 3, 8
Offset: 1
Keywords
Examples
a(30) = 5 because the minimum number that can be obtained starting with (3,2,1) is 3+2*1 = 5.
Crossrefs
Programs
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]]; Table[Min[nexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
Comments