A319856 Maximum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 7, 6, 8, 6, 8, 6, 9, 6, 9, 7, 8, 8, 10, 9, 11, 6, 10, 8, 12, 9, 12, 9, 12, 9, 13, 12, 14, 10, 12, 10, 15, 9, 16, 12, 14, 12, 16, 12, 15, 12, 16, 11, 17, 12, 18, 12, 16, 9, 18, 15, 19, 14, 18, 16, 20, 12, 21, 13
Offset: 1
Keywords
Examples
a(30) = 9 because the maximum number that can be obtained starting with (3,2,1) is 3*(2+1) = 9.
Crossrefs
Programs
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]]; Table[Max[nexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
Comments