cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322442 Number of pairs of set partitions of {1,...,n} where every block of one is a subset or superset of some block of the other.

Original entry on oeis.org

1, 1, 4, 25, 195, 1894, 22159, 303769, 4790858, 85715595, 1720097275, 38355019080, 942872934661, 25383601383937, 744118939661444, 23635548141900445, 809893084668253151, 29822472337116844174, 1175990509568611058299, 49504723853840395163221, 2218388253903492656783562
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(3) = 25 pairs of set partitions (these are actually all pairs of set partitions of {1,2,3}):
  (1)(2)(3)|(1)(2)(3)
  (1)(2)(3)|(1)(23)
  (1)(2)(3)|(12)(3)
  (1)(2)(3)|(13)(2)
  (1)(2)(3)|(123)
    (1)(23)|(1)(2)(3)
    (1)(23)|(1)(23)
    (1)(23)|(12)(3)
    (1)(23)|(13)(2)
    (1)(23)|(123)
    (12)(3)|(1)(2)(3)
    (12)(3)|(1)(23)
    (12)(3)|(12)(3)
    (12)(3)|(13)(2)
    (12)(3)|(123)
    (13)(2)|(1)(2)(3)
    (13)(2)|(1)(23)
    (13)(2)|(12)(3)
    (13)(2)|(13)(2)
    (13)(2)|(123)
      (123)|(1)(2)(3)
      (123)|(1)(23)
      (123)|(12)(3)
      (123)|(13)(2)
      (123)|(123)
Non-isomorphic representatives of the pairs of set partitions of {1,2,3,4} for which the condition fails:
    (12)(34)|(13)(24)
    (12)(34)|(1)(3)(24)
  (1)(2)(34)|(13)(24)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    costabQ[s_,t_]:=And@@Cases[s,x_:>Select[t,SubsetQ[x,#]||SubsetQ[#,x]&]!={}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[costabQ@@#,costabQ@@Reverse[#]]&]],{n,5}]
  • PARI
    F(x)={my(bell=(exp(y*(exp(x) - 1))  )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
    seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( exp( 2*exp(exp(x) - 1) - exp(x) - 1) * F(x) ))} \\ Andrew Howroyd, Jan 19 2024

Formula

E.g.f.: exp(exp(x)-1) * (2*B(x) - 1) where B(x) is the e.g.f. of A319884. - Andrew Howroyd, Jan 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 19 2024

A320768 Number of set partitions of the set of nonempty subsets of {1,...,n} where each block's elements are pairwise disjoint sets.

Original entry on oeis.org

1, 1, 2, 15, 2420, 333947200
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Examples

			The a(3) = 15 set partitions:
  {{{1}},{{2}},{{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2}},{{3},{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{1,3}},{{3}},{{1,2}},{{2,3}},{{1,2,3}}}
  {{{1}},{{2},{1,3}},{{3},{1,2}},{{2,3}},{{1,2,3}}}
  {{{1},{2}},{{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{2}},{{3},{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{3}},{{2}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
  {{{1},{3}},{{2},{1,3}},{{1,2}},{{2,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2}},{{3}},{{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2}},{{3},{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{3}},{{1,2}},{{1,3}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{1,3}},{{3}},{{1,2}},{{1,2,3}}}
  {{{1},{2,3}},{{2},{1,3}},{{3},{1,2}},{{1,2,3}}}
  {{{1},{2},{3}},{{1,2}},{{1,3}},{{2,3}},{{1,2,3}}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    sps[set_]:=spsu[Rest[Subsets[set]],set];
    Table[Length[spsu[Sort/@Union@@sps/@Rest[Subsets[Range[n]]],Rest[Subsets[Range[n]]]]],{n,4}]

Extensions

a(5) from, and definition clarified by Christian Sievers, Nov 30 2024
Showing 1-2 of 2 results.