cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319894 Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that R(i^4,prime(n)) > R(j^4,prime(n)), where R(k,p) (with p an odd prime) denotes the unique integer r among 0,...,(p-1)/2 with k congruent to r or -r modulo p.

Original entry on oeis.org

0, 0, 0, 6, 3, 5, 10, 22, 51, 62, 58, 53, 100, 146, 194, 200, 185, 246, 242, 310, 374, 344, 422, 497, 540, 582, 652, 683, 768, 946, 916, 1011, 1180, 1294, 1108, 1387, 1592, 1656, 1829, 2050, 2048, 2386, 2365, 2186, 2184, 2770, 2902, 2890, 3296, 3292, 3754, 3063, 3562, 3650, 4184, 4391, 4164, 4506, 4812
Offset: 2

Views

Author

Zhi-Wei Sun, Sep 30 2018

Keywords

Comments

Conjecture: Let p be an odd prime, and let r(p) be the number of ordered pairs (i,j) with 0 < i < j < p/2 and R(i^4,p) > R(j^4,p), where R(k,p) denotes the unique integer r among 0,...,(p-1)/2 with k congruent to r or -r modulo p. Then r(p) is even if p == 3 (mod 4). Also, r(p) == (p-5)/8 (mod 2) if p == 5 (mod 8). When p == 1 (mod 8), r(p) is even if and only if 2 is a quartic residue modulo p.
See also A319311, A319480 and A319882 for similar conjectures.

Examples

			a(6) = 3 since prime(6) = 13, (R(1^4,13),R(2^4,13),...,R(6^4,13)) = (1,3,3,9,1,9), and (2,5), (3,5) and (4,5) are only pairs (i,j) with 0 < i < j < 13/2 and R(i^4,13) > R(j^4,13).
		

Crossrefs

Programs

  • Mathematica
    f[k_,p_]:=f[k,p]=Abs[Mod[PowerMod[k,4,p],p,-p/2]];Inv[p_]:=Inv[p]=Sum[Boole[f[i,p]>f[j,p]],{j,2,(p-1)/2},{i,1,j-1}];Table[Inv[Prime[n]],{n,2,60}]