cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319909 Number of distinct positive integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with 1^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 4, 5, 10, 15, 21, 34, 49, 68, 101, 142, 197, 280, 387, 538, 751, 1045, 1442, 2010, 2772, 3865, 5339, 7396, 10273, 14201, 19693
Offset: 0

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			We have
   7 = 1+1+1+1+1+1+1,
   8 = (1+1)*(1+1+1)+1+1,
   9 = (1+1)*(1+1)*(1+1)+1,
  10 = (1+1+1+1+1)*(1+1),
  12 = (1+1+1)*(1+1+1+1),
so a(7) = 5.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Length[mexos[Table[1,{n}]]],{n,30}]