A048249 Number of distinct values produced from sums and products of n unity arguments.
1, 2, 3, 4, 6, 9, 11, 17, 23, 30, 44, 60, 80, 114, 156, 212, 296, 404, 556, 770, 1065, 1463, 2032, 2795, 3889, 5364, 7422, 10300, 14229, 19722, 27391, 37892, 52599, 73075, 101301, 140588, 195405, 271024, 376608, 523518, 726812, 1010576, 1405013, 1952498
Offset: 1
Examples
a(3)=3 since (in postfix): 111** = 11*1* = 1, 111*+ = 11*1+ = 111+* = 11+1* = 2 and 111++ = 11+1+ = 3. Note that at n=7, the 11 possible values produced are the set {1,2,3,4,5,6,7,8,9,10,12}. This is the first n for which there are "skipped" values in the set.
Links
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq( [f+g, f*g][], g=b(n-i)), f=b(i)), i=1..iquo(n, 2))}) end: a:= n-> nops(b(n)): seq(a(n), n=1..35); # Alois P. Heinz, May 05 2019
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; Table[Length[Select[ReplaceListRepeated[{Array[1&,n]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]],{n,10}] (* Gus Wiseman, Sep 29 2018 *)
-
Python
from functools import cache @cache def f(m): if m == 1: return {1} out = set() for j in range(1, m//2+1): for x in f(j): for y in f(m-j): out.update([x + y, x * y]) return out def a(n): return len(f(n)) print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Aug 03 2022
Formula
Equals partial sum of "number of numbers of complexity n" (A005421). - Jonathan Vos Post, Apr 07 2006
Extensions
More terms from David W. Wilson, Oct 10 2001
a(43)-a(44) from Alois P. Heinz, May 05 2019
Comments