cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A370808 Greatest number of multisets that can be obtained by choosing a divisor of each part of an integer partition of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 17, 19, 23, 29, 30, 39, 41, 51, 58, 66, 78, 82, 102, 110, 132, 144, 162, 186, 210, 228, 260, 296, 328, 366, 412, 462, 512, 560, 638, 692, 764, 860, 924, 1028, 1122, 1276, 1406, 1528, 1721, 1898, 2056, 2318, 2506, 2812, 3020, 3442
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partitions of 5 we have the following choices:
      (5): {{1},{5}}
     (41): {{1,1},{1,2},{1,4}}
     (32): {{1,1},{1,2},{1,3},{2,3}}
    (311): {{1,1,1},{1,1,3}}
    (221): {{1,1,1},{1,1,2},{1,2,2}}
   (2111): {{1,1,1,1},{1,1,1,2}}
  (11111): {{1,1,1,1,1}}
So a(5) = 4.
		

Crossrefs

For just prime factors we have A370809.
The version for factorizations is A370816, for just prime factors A370817.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355733 counts choices of divisors of prime indicec.
A370320 counts non-condensed partitions, ranks A355740.
A370592 counts factor-choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A370820 Number of positive integers that are a divisor of some prime index of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 4, 3, 3, 1, 2, 2, 4, 2, 3, 2, 3, 2, 2, 4, 2, 3, 4, 3, 2, 1, 3, 2, 4, 2, 6, 4, 4, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 4, 5, 2, 3, 3, 4, 4, 2, 3, 6, 2, 3, 1, 4, 3, 2, 2, 4, 4, 6, 2, 4, 6, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This sequence contains all nonnegative integers. In particular, a(prime(n)!) = n.

Examples

			2045 has prime indices {3,80} with combined divisors {1,2,3,4,5,8,10,16,20,40,80}, so a(2045) = 11. In fact, 2045 is the least number with this property.
		

Crossrefs

a(prime(n)) = A000005(n).
Positions of ones are A000079 except for 1.
a(n!) = A000720(n).
a(prime(n)!) = a(prime(A005179(n))) = n.
Counting prime factors instead of divisors gives A303975.
Positions of 2's are A371127.
Position of first appearance of n is A371131(n), sorted version A371181.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Union@@Divisors/@PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ Michel Marcus, May 02 2024

A319910 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.

Original entry on oeis.org

1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(4) = 11 pairs:
  4 <= (4)
  3 <= (3,1)
  4 <= (3,1)
  4 <= (2,2)
  2 <= (2,1,1)
  3 <= (2,1,1)
  4 <= (2,1,1)
  1 <= (1,1,1,1)
  2 <= (1,1,1,1)
  3 <= (1,1,1,1)
  4 <= (1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@nexos/@IntegerPartitions[n]],{n,20}]

A319913 Number of distinct integer partitions whose parts can be combined together using additions and multiplications to obtain n, with the exception that 1's can only be added and not multiplied with other parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 16, 20, 37, 53, 81, 107, 177, 227, 332, 449, 647, 830, 1162, 1480, 2032, 2597, 3447, 4348, 5775, 7251, 9374, 11758, 15026, 18640, 23688, 29220, 36771, 45128, 56168, 68674, 85015, 103394, 126923, 153871, 187911, 226653
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

All parts of the integer partition must be used in such a combination.

Examples

			The a(7) = 20 partitions (which are not all partitions of 7):
  (7),
  (61), (52), (43),
  (511), (321), (421), (331), (322),
  (3111), (4111), (2211), (3211), (2221),
  (21111), (31111), (22111),
  (111111), (211111),
  (1111111).
This list contains (2211) because we can write 7 = (2+1)*2+1. It contains (321) because we can write 7 = 3*2+1, even though the sum of parts is only 6.
		

Crossrefs

Formula

a(n) >= A000041(n).
a(n) >= A001055(n).

Extensions

a(13)-a(41) from Charlie Neder, Jun 02 2019

A319850 Number of distinct positive integers that can be obtained, starting with the initial interval partition (1, ..., n), by iteratively adding or multiplying together parts until only one part remains.

Original entry on oeis.org

1, 2, 5, 21, 94, 446, 2287, 12568, 78509
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The n-th row lists all integers that can be obtained starting with (1, ..., n):
  1
  2 3
  5 6 7 8 9
  9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 27 28 30 32 36
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    Table[Length[Select[ReplaceListRepeated[{Range[n]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]],{n,6}]

A319909 Number of distinct positive integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with 1^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 4, 5, 10, 15, 21, 34, 49, 68, 101, 142, 197, 280, 387, 538, 751, 1045, 1442, 2010, 2772, 3865, 5339, 7396, 10273, 14201, 19693
Offset: 0

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			We have
   7 = 1+1+1+1+1+1+1,
   8 = (1+1)*(1+1+1)+1+1,
   9 = (1+1)*(1+1)*(1+1)+1,
  10 = (1+1+1+1+1)*(1+1),
  12 = (1+1+1)*(1+1+1+1),
so a(7) = 5.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Length[mexos[Table[1,{n}]]],{n,30}]

A370809 Greatest number of multisets that can be obtained by choosing a prime factor of each part of an integer partition of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 4, 6, 6, 6, 6, 8, 6, 8, 8, 9, 8, 10, 9, 12, 10, 12, 12, 12, 12, 16, 13, 16, 16, 18, 16, 20, 18, 20, 20, 24, 20, 24, 24, 24, 26, 30, 26, 30, 30, 32, 32, 36, 32, 36, 36, 40, 38, 42, 40, 45, 44, 48
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partition (10,6,3,2) there are 4 choices: {2,2,2,3}, {2,2,3,3}, {2,2,3,5}, {2,3,3,5} so a(21) >= 4.
For the partitions of 6 we have the following choices:
  (6): {{2},{3}}
  (51): {}
  (42): {{2,2}}
  (411): {}
  (33): {{3,3}}
  (321): {}
  (3111): {}
  (222): {{2,2,2}}
  (2211): {}
  (21111): {}
  (111111): {}
So a(6) = 2.
		

Crossrefs

For just all divisors (not just prime factors) we have A370808.
The version for factorizations is A370817, for all divisors A370816.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741, A355744, A355745 choose prime factors of prime indices.
A368413 counts non-choosable factorizations, complement A368414.
A370320 counts non-condensed partitions, ranks A355740.
A370592, A370593, A370594, `A370807 count non-choosable partitions.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort /@ Tuples[If[#==1,{},First/@FactorInteger[#]]& /@ #]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A319912 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding any two or multiplying any two non-1 parts of y until only one part (equal to m) remains.

Original entry on oeis.org

1, 2, 3, 5, 12, 30, 53, 128, 247, 493, 989, 1889, 3434, 6390, 11526, 20400, 35818, 62083, 106223, 180170
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(6) = 30 pairs:
  1 <= (1)
  2 <= (2)
  2 <= (1,1)
  3 <= (3)
  3 <= (2,1)
  3 <= (1,1,1)
  4 <= (4)
  4 <= (2,2)
  4 <= (3,1)
  4 <= (2,1,1)
  4 <= (1,1,1,1)
  5 <= (5)
  5 <= (3,2)
  5 <= (4,1)
  5 <= (2,2,1)
  5 <= (3,1,1)
  5 <= (2,1,1,1)
  5 <= (1,1,1,1,1)
  6 <= (6)
  6 <= (3,2)
  6 <= (3,3)
  6 <= (4,2)
  6 <= (5,1)
  6 <= (2,2,1)
  6 <= (2,2,2)
  6 <= (3,1,1)
  6 <= (3,2,1)
  6 <= (4,1,1)
  6 <= (2,1,1,1)
  6 <= (2,2,1,1)
  6 <= (3,1,1,1)
  6 <= (1,1,1,1,1)
  6 <= (2,1,1,1,1)
  6 <= (1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@mexos/@IntegerPartitions[n]],{n,20}]

A370816 Greatest number of multisets that can be obtained by choosing a divisor of each factor in an integer factorization of n into unordered factors > 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 7, 2, 4, 4, 7, 2, 7, 2, 7, 4, 4, 2, 11, 3, 4, 5, 7, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 11, 2, 8, 2, 7, 7, 4, 2, 17, 3, 7, 4, 7, 2, 11, 4, 11, 4, 4, 2, 15, 2, 4, 7, 14, 4, 8, 2, 7, 4, 8, 2, 20, 2, 4, 7, 7, 4, 8, 2, 17, 7, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Examples

			For the factorizations of 12 we have the following choices:
  (2*2*3): {{1,1,1},{1,1,2},{1,1,3},{1,2,2},{1,2,3},{2,2,3}}
    (2*6): {{1,1},{1,2},{1,3},{1,6},{2,2},{2,3},{2,6}}
    (3*4): {{1,1},{1,2},{1,3},{1,4},{2,3},{3,4}}
     (12): {{1},{2},{3},{4},{6},{12}}
So a(12) = 7.
		

Crossrefs

The version for partitions is A370808, for just prime factors A370809.
For just prime factors we have A370817.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A368413 counts non-choosable factorizations, complement A368414.
A370813 counts non-divisor-choosable factorizations, complement A370814.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@facs[n]],{n,100}]

A319855 Minimum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 4, 3, 5, 2, 6, 4, 5, 1, 7, 4, 8, 3, 6, 5, 9, 2, 6, 6, 6, 4, 10, 5, 11, 1, 7, 7, 7, 4, 12, 8, 8, 3, 13, 6, 14, 5, 7, 9, 15, 2, 8, 6, 9, 6, 16, 6, 8, 4, 10, 10, 17, 5, 18, 11, 8, 1, 9, 7, 19, 7, 11, 7, 20, 4, 21, 12, 8, 8, 9, 8, 22, 3, 8
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			a(30) = 5 because the minimum number that can be obtained starting with (3,2,1) is 3+2*1 = 5.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Min[nexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]

Formula

a(1) = 0, a(n) = max(A056239(n) - A007814(n), 1). - Charlie Neder, Oct 03 2018
Showing 1-10 of 19 results. Next