A370808 Greatest number of multisets that can be obtained by choosing a divisor of each part of an integer partition of n.
1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 17, 19, 23, 29, 30, 39, 41, 51, 58, 66, 78, 82, 102, 110, 132, 144, 162, 186, 210, 228, 260, 296, 328, 366, 412, 462, 512, 560, 638, 692, 764, 860, 924, 1028, 1122, 1276, 1406, 1528, 1721, 1898, 2056, 2318, 2506, 2812, 3020, 3442
Offset: 0
Keywords
Examples
For the partitions of 5 we have the following choices: (5): {{1},{5}} (41): {{1,1},{1,2},{1,4}} (32): {{1,1},{1,2},{1,3},{2,3}} (311): {{1,1,1},{1,1,3}} (221): {{1,1,1},{1,1,2},{1,2,2}} (2111): {{1,1,1,1},{1,1,1,2}} (11111): {{1,1,1,1,1}} So a(5) = 4.
Crossrefs
Programs
-
Mathematica
Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@IntegerPartitions[n]],{n,0,30}]
Extensions
Terms a(31) onward from Max Alekseyev, Sep 17 2024
Comments