cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A239312 Number of condensed integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
Offset: 0

Views

Author

Clark Kimberling, Mar 15 2014

Keywords

Comments

Suppose that p is a partition of n. Let x(1), x(2), ..., x(k) be the distinct parts of p, and let m(i) be the multiplicity of x(i) in p. Let c(p) be the partition {m(1)*x(1), m(2)*x(2), ..., x(k)*m(k)} of n. Call a partition q of n a condensed partition of n if q = c(p) for some partition p of n. Then a(n) is the number of distinct condensed partitions of n. Note that c(p) = p if and only if p has distinct parts and that condensed partitions can have repeated parts.
Also the number of integer partitions of n such that it is possible to choose a different divisor of each part. For example, the partition (6,4,4,1) has choices (3,2,4,1), (3,4,2,1), (6,2,4,1), (6,4,2,1) so is counted under a(15). - Gus Wiseman, Mar 12 2024

Examples

			a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From _Gus Wiseman_, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (2,2)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                   (3,1)  (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (3,2,2)  (7,1)    (8,1)
                                          (4,2,1)  (3,3,2)  (4,3,2)
                                                   (4,2,2)  (4,4,1)
                                                   (4,3,1)  (5,2,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
(End)
		

Crossrefs

The strict case is A000009.
These partitions have ranks A368110, complement A355740.
The complement is counted by A370320.
The version for prime factors (not all divisors) is A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370805, complement A370804.
The version for factorizations is A370814, complement A370813.
A000005 counts divisors.
A000041 counts integer partitions.
A237685 counts partitions of depth 1, or A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, {[]},
          `if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
           sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
        end:
    a:= n-> nops(b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 01 2019
  • Mathematica
    u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0,   30}]
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]], {n,0,30}] (* Gus Wiseman, Mar 12 2024 *)

Extensions

Typo in definition corrected by Manfred Scheucher, May 29 2015
Name edited by Gus Wiseman, Mar 13 2024

A370320 Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2024

Keywords

Comments

Includes all partitions containing 1.

Examples

			The a(0) = 0 through a(8) = 13 partitions:
  .  .  (11)  (111)  (211)   (221)    (222)     (331)      (611)
                     (1111)  (311)    (411)     (511)      (2222)
                             (2111)   (2211)    (2221)     (3221)
                             (11111)  (3111)    (3211)     (3311)
                                      (21111)   (4111)     (4211)
                                      (111111)  (22111)    (5111)
                                                (31111)    (22211)
                                                (211111)   (32111)
                                                (1111111)  (41111)
                                                           (221111)
                                                           (311111)
                                                           (2111111)
                                                           (11111111)
		

Crossrefs

The complement is counted by A239312 (condensed partitions).
These partitions have ranks A355740.
Factorizations in the case of prime factors are A368413, complement A368414.
The complement for prime factors is A370592, ranks A368100.
The version for prime factors (not all divisors) is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370804, complement A370805.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(47) from Alois P. Heinz, Mar 03 2024

A370803 Number of integer partitions of n such that more than one set can be obtained by choosing a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 10, 11, 15, 18, 25, 28, 39, 45, 59, 66, 83, 101, 123, 150, 176, 213, 252, 301, 352, 426, 497, 589, 684, 802, 939, 1095, 1270, 1480, 1718, 1985, 2289, 2645, 3056, 3489, 4019, 4590, 5289, 6014, 6877, 7817, 8955, 10134, 11551, 13085
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Examples

			The partition (6,4,4,1) has two choices, namely {1,2,4,6} and {1,2,3,4}, so is counted under a(15).
The a(0) = 0 through a(13) = 18 partitions (A..D = 10..13):
  .  .  2   3   4   5    6    7    8     9     A     B     C     D
                    32   42   43   44    54    64    65    66    76
                    41        52   53    63    73    74    75    85
                              61   62    72    82    83    84    94
                                   431   81    91    92    93    A3
                                         432   433   A1    A2    B2
                                         621   532   443   543   C1
                                               541   542   633   544
                                               622   632   642   643
                                               631   641   651   652
                                                     821   732   661
                                                           741   742
                                                           822   832
                                                           831   841
                                                           921   922
                                                                 A21
                                                                 5431
                                                                 6421
		

Crossrefs

Including partitions with one choice gives A239312, complement A370320.
For a unique choice we have A370595, ranks A370810.
These partitions have ranks A370811.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355733 counts divisor-choices of prime indices.
A355741, A355744, A355745 choose prime factors of prime indices.
A370592 counts factor-choosable partitions, ranks A368100.
A370593 counts non-factor-choosable partitions, ranks A355529.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]>1&]],{n,0,30}]

Formula

a(n) = A239312(n) - A370595(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A370595 Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Comments

For example, the only choice for the partition (9,9,6,6,6) is {1,2,3,6,9}.

Examples

			The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13):
  1  .  21  22  .  33   322  71   441  55    533   B1    553   77    933
            31     51   421  332  522  442   722   444   733   D1    B22
                   321       422  531  721   731   552   751   B21   B31
                             521       4321  4322  4332  931   4433  4443
                                             5321  4431  4432  5441  5442
                                                   5322  5332  6332  5532
                                                   5421  5422  7322  6621
                                                   6321  6322  7421  7332
                                                         7321        7422
                                                                     7521
                                                                     8421
                                                                     9321
                                                                     54321
		

Crossrefs

For no choices we have A370320, complement A239312.
The version for prime factors (not all divisors) is A370594, ranks A370647.
For multiple choices we have A370803, ranks A370811.
These partitions have ranks A370810.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370592 counts partitions with choosable prime factors, ranks A368100.
A370593 counts partitions without choosable prime factors, ranks A355529.
A370804 counts non-condensed partitions with no ones, complement A370805.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A370810 Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n.

Original entry on oeis.org

1, 2, 6, 9, 10, 22, 25, 30, 34, 42, 45, 62, 63, 66, 75, 82, 98, 99, 102, 110, 118, 121, 134, 147, 153, 166, 170, 186, 210, 218, 230, 246, 254, 275, 279, 289, 310, 314, 315, 330, 343, 354, 358, 363, 369, 374, 382, 390, 402, 410, 422, 425, 462, 482, 490, 495
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   22: {1,5}
   25: {3,3}
   30: {1,2,3}
   34: {1,7}
   42: {1,2,4}
   45: {2,2,3}
   62: {1,11}
   63: {2,2,4}
   66: {1,2,5}
   75: {2,3,3}
   82: {1,13}
   98: {1,4,4}
   99: {2,2,5}
  102: {1,2,7}
  110: {1,3,5}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370595 and A370815.
For just prime factors we have A370647, counted by A370594.
For more than one choice we have A370811, counted by A370803.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&]
Showing 1-5 of 5 results.