A239312
Number of condensed integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
Offset: 0
a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From _Gus Wiseman_, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,2,2) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,2,2) (4,4,1)
(4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,2,1)
(End)
The complement is counted by
A370320.
The version for prime factors (not all divisors) is
A370592, ranks
A368100.
A237685 counts partitions of depth 1, or
A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
Cf.
A355535,
A355733,
A355739,
A367867,
A368097,
A368414,
A370583,
A370584,
A370594,
A370806,
A370808.
-
b:= proc(n,i) option remember; `if`(n=0, {[]},
`if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> nops(b(n$2)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 01 2019
-
u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0, 30}]
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]], {n,0,30}] (* Gus Wiseman, Mar 12 2024 *)
A370320
Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0
The a(0) = 0 through a(8) = 13 partitions:
. . (11) (111) (211) (221) (222) (331) (611)
(1111) (311) (411) (511) (2222)
(2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (5111)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
The complement is counted by
A239312 (condensed partitions).
These partitions have ranks
A355740.
Factorizations in the case of prime factors are
A368413, complement
A368414.
The version for prime factors (not all divisors) is
A370593, ranks
A355529.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
Cf.
A355535,
A355739,
A367867,
A368097,
A368110,
A370583,
A370584,
A370594,
A370806,
A370807,
A370808.
-
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]
A370803
Number of integer partitions of n such that more than one set can be obtained by choosing a different divisor of each part.
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 10, 11, 15, 18, 25, 28, 39, 45, 59, 66, 83, 101, 123, 150, 176, 213, 252, 301, 352, 426, 497, 589, 684, 802, 939, 1095, 1270, 1480, 1718, 1985, 2289, 2645, 3056, 3489, 4019, 4590, 5289, 6014, 6877, 7817, 8955, 10134, 11551, 13085
Offset: 0
The partition (6,4,4,1) has two choices, namely {1,2,4,6} and {1,2,3,4}, so is counted under a(15).
The a(0) = 0 through a(13) = 18 partitions (A..D = 10..13):
. . 2 3 4 5 6 7 8 9 A B C D
32 42 43 44 54 64 65 66 76
41 52 53 63 73 74 75 85
61 62 72 82 83 84 94
431 81 91 92 93 A3
432 433 A1 A2 B2
621 532 443 543 C1
541 542 633 544
622 632 642 643
631 641 651 652
821 732 661
741 742
822 832
831 841
921 922
A21
5431
6421
Including partitions with one choice gives
A239312, complement
A370320.
These partitions have ranks
A370811.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A355733 counts divisor-choices of prime indices.
-
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]>1&]],{n,0,30}]
A370595
Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0
The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13):
1 . 21 22 . 33 322 71 441 55 533 B1 553 77 933
31 51 421 332 522 442 722 444 733 D1 B22
321 422 531 721 731 552 751 B21 B31
521 4321 4322 4332 931 4433 4443
5321 4431 4432 5441 5442
5322 5332 6332 5532
5421 5422 7322 6621
6321 6322 7421 7332
7321 7422
7521
8421
9321
54321
The version for prime factors (not all divisors) is
A370594, ranks
A370647.
These partitions have ranks
A370810.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370592 counts partitions with choosable prime factors, ranks
A368100.
A370593 counts partitions without choosable prime factors, ranks
A355529.
A370804 counts non-condensed partitions with no ones, complement
A370805.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]
A370810
Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n.
Original entry on oeis.org
1, 2, 6, 9, 10, 22, 25, 30, 34, 42, 45, 62, 63, 66, 75, 82, 98, 99, 102, 110, 118, 121, 134, 147, 153, 166, 170, 186, 210, 218, 230, 246, 254, 275, 279, 289, 310, 314, 315, 330, 343, 354, 358, 363, 369, 374, 382, 390, 402, 410, 422, 425, 462, 482, 490, 495
Offset: 1
The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
22: {1,5}
25: {3,3}
30: {1,2,3}
34: {1,7}
42: {1,2,4}
45: {2,2,3}
62: {1,11}
63: {2,2,4}
66: {1,2,5}
75: {2,3,3}
82: {1,13}
98: {1,4,4}
99: {2,2,5}
102: {1,2,7}
110: {1,3,5}
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&]
Showing 1-5 of 5 results.
Comments