cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A319910 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.

Original entry on oeis.org

1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(4) = 11 pairs:
  4 <= (4)
  3 <= (3,1)
  4 <= (3,1)
  4 <= (2,2)
  2 <= (2,1,1)
  3 <= (2,1,1)
  4 <= (2,1,1)
  1 <= (1,1,1,1)
  2 <= (1,1,1,1)
  3 <= (1,1,1,1)
  4 <= (1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@nexos/@IntegerPartitions[n]],{n,20}]

A319913 Number of distinct integer partitions whose parts can be combined together using additions and multiplications to obtain n, with the exception that 1's can only be added and not multiplied with other parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 16, 20, 37, 53, 81, 107, 177, 227, 332, 449, 647, 830, 1162, 1480, 2032, 2597, 3447, 4348, 5775, 7251, 9374, 11758, 15026, 18640, 23688, 29220, 36771, 45128, 56168, 68674, 85015, 103394, 126923, 153871, 187911, 226653
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

All parts of the integer partition must be used in such a combination.

Examples

			The a(7) = 20 partitions (which are not all partitions of 7):
  (7),
  (61), (52), (43),
  (511), (321), (421), (331), (322),
  (3111), (4111), (2211), (3211), (2221),
  (21111), (31111), (22111),
  (111111), (211111),
  (1111111).
This list contains (2211) because we can write 7 = (2+1)*2+1. It contains (321) because we can write 7 = 3*2+1, even though the sum of parts is only 6.
		

Crossrefs

Formula

a(n) >= A000041(n).
a(n) >= A001055(n).

Extensions

a(13)-a(41) from Charlie Neder, Jun 02 2019

A319909 Number of distinct positive integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with 1^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 4, 5, 10, 15, 21, 34, 49, 68, 101, 142, 197, 280, 387, 538, 751, 1045, 1442, 2010, 2772, 3865, 5339, 7396, 10273, 14201, 19693
Offset: 0

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			We have
   7 = 1+1+1+1+1+1+1,
   8 = (1+1)*(1+1+1)+1+1,
   9 = (1+1)*(1+1)*(1+1)+1,
  10 = (1+1+1+1+1)*(1+1),
  12 = (1+1+1)*(1+1+1+1),
so a(7) = 5.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Length[mexos[Table[1,{n}]]],{n,30}]

A319911 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n with no 1's, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 9, 21, 31, 65, 102, 194, 321, 575, 956, 1652, 2684, 4576, 7367, 12035, 19490, 31185, 49418, 78595, 123393
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(6) = 7 pairs:
  6 <= (6)
  6 <= (4,2)
  8 <= (4,2)
  6 <= (3,3)
  9 <= (3,3)
  6 <= (2,2,2)
  8 <= (2,2,2)
The a(7) = 9 pairs:
   7 <= (7)
   7 <= (5,2)
  10 <= (5,2)
   7 <= (4,3)
  12 <= (4,3)
   7 <= (3,2,2)
   8 <= (3,2,2)
  10 <= (3,2,2)
  12 <= (3,2,2)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@nexos/@Select[IntegerPartitions[n],FreeQ[#,1]&]],{n,30}]

A319925 Number of integer partitions with no 1's whose parts can be combined together using additions and multiplications to obtain n.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 4, 10, 10, 18, 19, 38, 35, 62, 71, 113, 122, 199, 213, 329
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

All parts of the partition must be used in such a combination.

Examples

			The a(8) = 10 partitions (which are not all partitions of 8):
  (8),
  (42), (62), (53), (44),
  (222), (322), (422), (332),
  (2222).
For example, this list contains (322) because we can write 8 = 3*2+2.
		

Crossrefs

Formula

a(n) >= A001055(n).
a(n) >= A002865(n).

A319907 Number of distinct integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 1, 2, 4, 1, 4, 1, 2, 4, 1, 1, 4, 2, 3, 2, 2, 1, 5, 2, 4, 2, 1, 1, 5, 1, 1, 4, 4, 2, 4, 1, 2, 2, 4, 1, 5, 1, 1, 6, 2, 2, 4, 1, 5, 4, 1, 1, 7, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The Heinz number of (3,3,2) is 75 and we have
    3+3+2 = 8,
    3+3*2 = 9,
    3*3+2 = 11,
  (3+3)*2 = 12,
  3*(3+2) = 15,
    3*3*2 = 18,
so a(75) = 6.
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Length[mexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
Showing 1-6 of 6 results.