cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319912 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding any two or multiplying any two non-1 parts of y until only one part (equal to m) remains.

Original entry on oeis.org

1, 2, 3, 5, 12, 30, 53, 128, 247, 493, 989, 1889, 3434, 6390, 11526, 20400, 35818, 62083, 106223, 180170
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(6) = 30 pairs:
  1 <= (1)
  2 <= (2)
  2 <= (1,1)
  3 <= (3)
  3 <= (2,1)
  3 <= (1,1,1)
  4 <= (4)
  4 <= (2,2)
  4 <= (3,1)
  4 <= (2,1,1)
  4 <= (1,1,1,1)
  5 <= (5)
  5 <= (3,2)
  5 <= (4,1)
  5 <= (2,2,1)
  5 <= (3,1,1)
  5 <= (2,1,1,1)
  5 <= (1,1,1,1,1)
  6 <= (6)
  6 <= (3,2)
  6 <= (3,3)
  6 <= (4,2)
  6 <= (5,1)
  6 <= (2,2,1)
  6 <= (2,2,2)
  6 <= (3,1,1)
  6 <= (3,2,1)
  6 <= (4,1,1)
  6 <= (2,1,1,1)
  6 <= (2,2,1,1)
  6 <= (3,1,1,1)
  6 <= (1,1,1,1,1)
  6 <= (2,1,1,1,1)
  6 <= (1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@mexos/@IntegerPartitions[n]],{n,20}]