A319912 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding any two or multiplying any two non-1 parts of y until only one part (equal to m) remains.
1, 2, 3, 5, 12, 30, 53, 128, 247, 493, 989, 1889, 3434, 6390, 11526, 20400, 35818, 62083, 106223, 180170
Offset: 1
Examples
The a(6) = 30 pairs: 1 <= (1) 2 <= (2) 2 <= (1,1) 3 <= (3) 3 <= (2,1) 3 <= (1,1,1) 4 <= (4) 4 <= (2,2) 4 <= (3,1) 4 <= (2,1,1) 4 <= (1,1,1,1) 5 <= (5) 5 <= (3,2) 5 <= (4,1) 5 <= (2,2,1) 5 <= (3,1,1) 5 <= (2,1,1,1) 5 <= (1,1,1,1,1) 6 <= (6) 6 <= (3,2) 6 <= (3,3) 6 <= (4,2) 6 <= (5,1) 6 <= (2,2,1) 6 <= (2,2,2) 6 <= (3,1,1) 6 <= (3,2,1) 6 <= (4,1,1) 6 <= (2,1,1,1) 6 <= (2,2,1,1) 6 <= (3,1,1,1) 6 <= (1,1,1,1,1) 6 <= (2,1,1,1,1) 6 <= (1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]]; Table[Total[Length/@mexos/@IntegerPartitions[n]],{n,20}]