cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319919 Expansion of Product_{k>=1} (1 + x^k)^(2^k-1).

Original entry on oeis.org

1, 1, 3, 10, 25, 70, 182, 476, 1220, 3122, 7883, 19794, 49340, 122237, 301114, 737923, 1799597, 4369204, 10563800, 25441377, 61048713, 145988775, 347981713, 826921992, 1959363778, 4629903905, 10911757432, 25652950459, 60165831361, 140792215037, 328750398275, 766041930160, 1781452975346
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2018

Keywords

Comments

Convolution of A081362 and A102866.
Weigh transform of A000225.

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k)^(2^k-1),k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ c * exp(2*sqrt(n) - 1/2) * 2^(n-1) / (A079555 * sqrt(Pi) * n^(3/4)), where c = exp(Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1))) = 0.6602994483152065685... - Vaclav Kotesovec, Sep 15 2021