A319930 a(n) = (1/24)*n*(n - 1)*(n - 3)*(n - 14).
0, 0, 1, 0, -5, -15, -30, -49, -70, -90, -105, -110, -99, -65, 0, 105, 260, 476, 765, 1140, 1615, 2205, 2926, 3795, 4830, 6050, 7475, 9126, 11025, 13195, 15660, 18445, 21576, 25080, 28985, 33320, 38115, 43401, 49210, 55575, 62530, 70110, 78351, 87290, 96965
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Maple
a := n -> (1/24)*n*(n-1)*(n-3)*(n-14): seq(a(n), n=0..44);
-
Mathematica
Table[(n(n-1)(n-3)(n-14))/24,{n,0,70}] (* Harvey P. Dale, Apr 29 2022 *)
Formula
a(n) = [x^4] DedekindEta(x)^n.
a(n) = A319933(n, 4).