cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319952 Let M = A022342(n) be the n-th number whose Zeckendorf representation is even; then a(n) = A129761(M).

Original entry on oeis.org

1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1, 2, 43, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 86, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1, 2, 171, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1
Offset: 2

Views

Author

Jeffrey Shallit and N. J. A. Sloane, Oct 03 2018

Keywords

Comments

The Zeckendorf representations of numbers are given in A014417. The even ones are specified by A022342.
The offset here is 2 (because A129761 should really have had offset 1 not 0).

Crossrefs

Programs

  • Maple
    with(combinat): F:=fibonacci:
    A130234 := proc(n)
        local i;
        for i from 0 do
            if F(i) >= n then
                return i;
            end if;
        end do:
    end proc:
    A014417 := proc(n)
        local nshi, Z, i ;
        if n <= 1 then
            return n;
        end if;
        nshi := n ;
        Z := [] ;
        for i from A130234(n) to 2 by -1 do
            if nshi >= F(i) and nshi > 0 then
                Z := [1, op(Z)] ;
                nshi := nshi-F(i) ;
            else
                Z := [0, op(Z)] ;
            end if;
        end do:
        add( op(i, Z)*10^(i-1), i=1..nops(Z)) ;
    end proc:
    A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n)
           while F(j+1)<=n do od; (j-1); end proc:
    A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end proc:
    A129761 := n -> A003714(n+1)-A003714(n):
    a:=[];
    for n from 1 to 120 do
       if (A014417(n) mod 2) = 0 then a:=[op(a), A129761(n-1)]; fi;
    od;
    a;

Formula

If the Zeckendorf representation of M ends with exactly k zeros, ...10^k, then a(n) = ceiling(2^k/3).