A319974 Expansion of (1-x^3+x^4+x^6)/(b(2)*b(3)*b(4)) where b(n) = 1-x^n.
1, 0, 1, 0, 3, 0, 4, 1, 6, 2, 8, 3, 11, 5, 13, 7, 17, 9, 20, 12, 24, 15, 28, 18, 33, 22, 37, 26, 43, 30, 48, 35, 54, 40, 60, 45, 67, 51, 73, 57, 81, 63, 88, 70, 96, 77, 104, 84, 113, 92, 121, 100, 131, 108, 140, 117, 150, 126, 160, 135, 171, 145, 181, 155, 193, 165, 204, 176, 216, 187, 228, 198, 241, 210, 253
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Roberto De Maria Nunes Mendes, Symmetries of spherical harmonics, Transactions of the American Mathematical Society 204 (1975): 161-178. See subgroup 105.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{1,0,1,0,3,0,4,1,6},80] (* Harvey P. Dale, Jan 31 2022 *)
-
PARI
Vec((1 - x^3 + x^4 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Oct 09 2018
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Colin Barker, Oct 09 2018