A319996 Let g = A006530(n), the largest prime factor of n. This filter sequence combines (g mod 6), n/g (A052126), and a single bit A319988(n) telling whether the largest prime factor is unitary.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 7, 12, 13, 14, 5, 15, 7, 16, 17, 10, 5, 18, 19, 12, 20, 21, 5, 22, 7, 23, 13, 10, 24, 25, 7, 12, 17, 26, 5, 27, 7, 16, 28, 10, 5, 29, 30, 31, 13, 21, 5, 32, 33, 34, 17, 10, 5, 35, 7, 12, 36, 37, 24, 22, 7, 16, 13, 38, 5, 39, 7, 12, 40, 21, 41, 27, 7, 42, 43, 10, 5, 44, 33, 12, 13, 26, 5, 45, 46, 16, 17, 10, 24, 47, 7, 48, 28, 49, 5, 22, 7, 34
Offset: 1
Keywords
Examples
For n = 15 (3*5) and n = 33 (3*11), the mod 6 residue of the largest prime factor is 5, also in both cases it is unitary (A319988(n) = 1), and the quotient n/A006530(n) is equal, in this case 3. Thus a(15) and a(33) are alloted the same running count (13 in this case) by rgs-transform. For n = 2275 (5^2 * 7 * 13), n = 3325 (5^2 * 7 * 19), 5425 (5^2 * 7 * 31) and 6475 (5^2 * 7 * 37), the largest prime factor = 1 (mod 6), and A052126(n) = 175, thus these numbers are allotted the same running count (394 in this case) by rgs-transform.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1); A052126(n) = (n/A006530(n)); A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1)); A319996aux(n) = if(1==n,0,[A006530(n)%6, A052126(n), A319988(n)]); v319996 = rgs_transform(vector(up_to,n,A319996aux(n))); A319996(n) = v319996[n];
Comments