cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320015 Number of proper divisors of n that are either of the form 6*k+1 or 6*k + 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 4, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 1, 1, 3, 2, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && MemberQ[{1, 5}, Mod[#, 6]] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320015(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A320001(n) + A320005(n).
a(n) = A035218(n) - ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = 2*(gamma + log(12)/4 - 1)/3 = 0.132294..., and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023