cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320047 Consider coefficients U(m,l,k) defined by the identity Sum_{k=1..l} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,l,k) * T^k that holds for all positive integers l,m,T. This sequence gives 2-column table read by rows, where n-th row lists coefficients U(1,n,k) for k = 0, 1 and n >= 1.

Original entry on oeis.org

5, 6, 28, 18, 81, 36, 176, 60, 325, 90, 540, 126, 833, 168, 1216, 216, 1701, 270, 2300, 330, 3025, 396, 3888, 468, 4901, 546, 6076, 630, 7425, 720, 8960, 816, 10693, 918, 12636, 1026, 14801, 1140, 17200, 1260, 19845, 1386, 22748, 1518, 25921, 1656
Offset: 1

Views

Author

Kolosov Petro, Oct 04 2018

Keywords

Comments

For l=T, the identity takes the form T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k, which holds for all positive integers T and m.

Examples

			        column  column
   l      k=0     k=1
  ---   ------  ------
   1       5       6
   2      28      18
   3      81      36
   4     176      60
   5     325      90
   6     540     126
   7     833     168
   8    1216     216
   9    1701     270
  10    2300     330
  11    3025     396
  12    3888     468
  ...
		

Crossrefs

The case m=2 is A316349.
The case m=3 is A316387.
Column k=0 is A275709.
Column k=1 is A028896.

Programs

  • Mathematica
    (* Define the R[n,k] := A302971(n,k)/A304042(n,k) *)
    R[n_, k_] := 0
    R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
       Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
       BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
    R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
    (* Define the U(m,l,t) coefficients *)
    U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
    (* Define the value of the variable 'm' to be m = 1 for A320047 *)
    m = 1;
    (* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
    Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]

Formula

U(m,l,t) = (-1)^m * Sum_{k=1..l} Sum_{j=t..m} binomial(j,t) * R(m,j) * k^{2j-t} * (-1)^j, where m = 1, l >= 1 and R(m,j) = A302971(m,j)/A304042(m,j); after Max Alekseyev, see links.
Conjectures from Colin Barker, Aug 03 2019: (Start)
G.f.: x*(5 + 6*x + 8*x^2 - 6*x^3 - x^4) / ((1 - x)^4*(1 + x)^4).
a(n) = (4 - 4*(-1)^n - 3*(-5+(-1)^n)*n - 3*(-3+(-1)^n)*n^2 + (1+(-1)^(1+n))*n^3) / 8.
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n>8.
(End)