A320050 Expansion of (psi(x) / phi(x))^7 in powers of x where phi(), psi() are Ramanujan theta functions.
1, -7, 35, -140, 483, -1498, 4277, -11425, 28889, -69734, 161735, -362271, 786877, -1662927, 3428770, -6913760, 13660346, -26492361, 50504755, -94766875, 175221109, -319564227, 575387295, -1023624280, 1800577849, -3133695747, 5399228149, -9214458260, 15584195428
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[((1-x^k) * (1-x^(4*k))^2 / (1-x^(2*k))^3)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2018 *)
Formula
Convolution inverse of A029844.
Expansion of q^(-7/8) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^7 in powers of q.
a(n) ~ (-1)^n * 7^(1/4) * exp(Pi*sqrt((7*n)/2)) / (256*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Oct 06 2018
Comments