cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320052 Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Examples

			The sequence of product-sum knapsack partitions begins:
   0: ()
   1:
   2: (2)
   3: (3)
   4: (4)
   5: (5) (3,2)
   6: (6) (4,2) (3,3)
   7: (7) (5,2) (4,3)
   8: (8) (6,2) (5,3) (4,4)
   9: (9) (7,2) (6,3) (5,4)
  10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
  11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3)
  12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4)
A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is:
           () = 1
          (3) = 3
          (4) = 4
        (3+3) = 6
        (3+4) = 7
      (3+3+4) = 10
      (3)*(3) = 9
      (3)*(4) = 12
    (3)*(3+4) = 21
    (4)*(3+3) = 24
  (3)*(3)*(4) = 36
These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    rrsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,Union@@mps/@Union[Subsets[q]],{2}],{1}]]];
    Table[Length[rrsuks[n]],{n,12}]