A320052 Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct.
1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 8
Offset: 0
Examples
The sequence of product-sum knapsack partitions begins: 0: () 1: 2: (2) 3: (3) 4: (4) 5: (5) (3,2) 6: (6) (4,2) (3,3) 7: (7) (5,2) (4,3) 8: (8) (6,2) (5,3) (4,4) 9: (9) (7,2) (6,3) (5,4) 10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3) 11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3) 12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4) A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is: () = 1 (3) = 3 (4) = 4 (3+3) = 6 (3+4) = 7 (3+3+4) = 10 (3)*(3) = 9 (3)*(4) = 12 (3)*(3+4) = 21 (4)*(3+3) = 24 (3)*(3)*(4) = 36 These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; rrsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,Union@@mps/@Union[Subsets[q]],{2}],{1}]]]; Table[Length[rrsuks[n]],{n,12}]