A320053 Number of spanning sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of y is distinct.
1, 1, 2, 3, 2, 3, 4, 5, 6, 8, 9, 12, 14
Offset: 0
Examples
The sequence of spanning sum-product knapsack partitions begins: 0: () 1: (1) 2: (2) (1,1) 3: (3) (2,1) (1,1,1) 4: (4) (3,1) 5: (5) (4,1) (3,2) 6: (6) (5,1) (4,2) (3,3) 7: (7) (6,1) (5,2) (4,3) (3,3,1) 8: (8) (7,1) (6,2) (5,3) (4,4) (3,3,2) 9: (9) (8,1) (7,2) (6,3) (5,4) (4,4,1) (4,3,2) (3,3,3) A complete list of all sums of products covering the parts of (3,3,3,2) is: (2*3*3*3) = 54 (2)+(3*3*3) = 29 (3)+(2*3*3) = 21 (2*3)+(3*3) = 15 (2)+(3)+(3*3) = 14 (3)+(3)+(2*3) = 12 (2)+(3)+(3)+(3) = 11 These are all distinct, so (3,3,3,2) is a spanning sum-product knapsack partition of 11. An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2).
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; rtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,mps[q],{2}],{1}]]]; Table[Length[rtuks[n]],{n,8}]