A320054 Number of spanning product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums the parts of a multiset partition of y is distinct.
1, 1, 2, 3, 2, 4, 5, 8, 10, 12, 16, 17, 25
Offset: 0
Examples
The sequence of spanning product-sum knapsack partitions begins 0: () 1: (1) 2: (2) (1,1) 3: (3) (2,1) (1,1,1) 4: (4) (3,1) 5: (5) (4,1) (3,2) (3,1,1) 6: (6) (5,1) (4,2) (4,1,1) (3,3) 7: (7) (6,1) (5,2) (5,1,1) (4,3) (4,2,1) (4,1,1,1) (3,3,1) 8: (8) (7,1) (6,2) (6,1,1) (5,3) (5,2,1) (5,1,1,1) (4,4) (4,3,1) (3,3,2) 9: (9) (8,1) (7,2) (7,1,1) (6,3) (6,2,1) (6,1,1,1) (5,4) (5,3,1) (4,4,1) (4,3,2) (3,3,3) A complete list of all products of sums covering the parts of (4,1,1,1) is: (1+1+1+4) = 7 (1)*(1+1+4) = 6 (4)*(1+1+1) = 12 (1+1)*(1+4) = 10 (1)*(1)*(1+4) = 5 (1)*(4)*(1+1) = 8 (1)*(1)*(1)*(4) = 4 These are all distinct, so (4,1,1,1) is a spanning product-sum knapsack partition of 7. A complete list of all products of sums covering the parts of (5,3,1,1) is: (1+1+3+5) = 10 (1)*(1+3+5) = 9 (3)*(1+1+5) = 21 (5)*(1+1+3) = 25 (1+1)*(3+5) = 16 (1+3)*(1+5) = 24 (1)*(1)*(3+5) = 8 (1)*(3)*(1+5) = 18 (1)*(5)*(1+3) = 20 (3)*(5)*(1+1) = 30 (1)*(1)*(3)*(5) = 15 These are all distinct, so (5,3,1,1) is a spanning product-sum knapsack partition of 10. An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2).
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; rsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,mps[q],{2}],{1}]]]; Table[Length[rsuks[n]],{n,10}]