A267597
Number of sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of any submultiset of y is distinct.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 12, 14, 18, 23, 23, 32, 30, 35, 50, 48, 47, 56, 80, 77, 87, 105, 100, 134, 139, 145, 194, 170, 192, 250
Offset: 0
The sequence of product-sum knapsack partitions begins:
0: ()
1: (1)
2: (2)
3: (3)
4: (4)
5: (5) (3,2)
6: (6) (4,2) (3,3)
7: (7) (5,2) (4,3)
8: (8) (6,2) (5,3) (4,4)
9: (9) (7,2) (6,3) (5,4)
10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3)
The partition (4,4,3) is not a sum-product knapsack partition of 11 because (4*4) = (4)+(4*3).
A complete list of all sums of products of multiset partitions of submultisets of (5,4,2) is:
0 = 0
(2) = 2
(4) = 4
(5) = 5
(2*4) = 8
(2*5) = 10
(4*5) = 20
(2*4*5) = 40
(2)+(4) = 6
(2)+(5) = 7
(2)+(4*5) = 22
(4)+(5) = 9
(4)+(2*5) = 14
(5)+(2*4) = 13
(2)+(4)+(5) = 11
These are all distinct, so (5,4,2) is a sum-product knapsack partition of 11.
Cf.
A001970,
A066739,
A108917,
A275972,
A292886,
A316313,
A318949,
A319318,
A319320,
A319910,
A319913.
-
sps[{}]:={{}};
sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
rrtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,Union@@mps/@Union[Subsets[q]],{2}],{1}]]];
Table[Length[rrtuks[n]],{n,12}]
A320055
Heinz numbers of sum-product knapsack partitions.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1
A complete list of sums of products of multiset partitions of submultisets of the partition (6,6,3) is:
0 = 0
(3) = 3
(6) = 6
(3*6) = 18
(6*6) = 36
(3*6*6) = 108
(3)+(6) = 9
(3)+(6*6) = 39
(6)+(6) = 12
(6)+(3*6) = 24
(3)+(6)+(6) = 15
These are all distinct, and the Heinz number of (6,6,3) is 845, so 845 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,Join@@facs/@Divisors[#]}]&]
A320056
Heinz numbers of product-sum knapsack partitions.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1
A complete list of products of sums of multiset partitions of submultisets of the partition (5,5,4) is:
() = 1
(4) = 4
(5) = 5
(4+5) = 9
(5+5) = 10
(4+5+5) = 14
(4)*(5) = 20
(4)*(5+5) = 40
(5)*(5) = 25
(5)*(4+5) = 45
(4)*(5)*(5) = 100
These are all distinct, and the Heinz number of (5,5,4) is 847, so 847 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,Join@@facs/@Divisors[#]}]&]
A320052
Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 8
Offset: 0
The sequence of product-sum knapsack partitions begins:
0: ()
1:
2: (2)
3: (3)
4: (4)
5: (5) (3,2)
6: (6) (4,2) (3,3)
7: (7) (5,2) (4,3)
8: (8) (6,2) (5,3) (4,4)
9: (9) (7,2) (6,3) (5,4)
10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3)
12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4)
A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is:
() = 1
(3) = 3
(4) = 4
(3+3) = 6
(3+4) = 7
(3+3+4) = 10
(3)*(3) = 9
(3)*(4) = 12
(3)*(3+4) = 21
(4)*(3+3) = 24
(3)*(3)*(4) = 36
These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10.
Cf.
A001970,
A066739,
A108917,
A275972,
A292886,
A316313,
A318949,
A319318,
A319320,
A319910,
A319913.
-
sps[{}]:={{}};
sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
rrsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,Union@@mps/@Union[Subsets[q]],{2}],{1}]]];
Table[Length[rrsuks[n]],{n,12}]
A320053
Number of spanning sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of y is distinct.
Original entry on oeis.org
1, 1, 2, 3, 2, 3, 4, 5, 6, 8, 9, 12, 14
Offset: 0
The sequence of spanning sum-product knapsack partitions begins:
0: ()
1: (1)
2: (2) (1,1)
3: (3) (2,1) (1,1,1)
4: (4) (3,1)
5: (5) (4,1) (3,2)
6: (6) (5,1) (4,2) (3,3)
7: (7) (6,1) (5,2) (4,3) (3,3,1)
8: (8) (7,1) (6,2) (5,3) (4,4) (3,3,2)
9: (9) (8,1) (7,2) (6,3) (5,4) (4,4,1) (4,3,2) (3,3,3)
A complete list of all sums of products covering the parts of (3,3,3,2) is:
(2*3*3*3) = 54
(2)+(3*3*3) = 29
(3)+(2*3*3) = 21
(2*3)+(3*3) = 15
(2)+(3)+(3*3) = 14
(3)+(3)+(2*3) = 12
(2)+(3)+(3)+(3) = 11
These are all distinct, so (3,3,3,2) is a spanning sum-product knapsack partition of 11.
An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2).
Cf.
A001970,
A066739,
A108917,
A275972,
A292886,
A316313,
A318949,
A319318,
A319320,
A319910,
A319913.
-
sps[{}]:={{}};
sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
rtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,mps[q],{2}],{1}]]];
Table[Length[rtuks[n]],{n,8}]
A320057
Heinz numbers of spanning sum-product knapsack partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 103, 105
Offset: 1
The sequence of all spanning sum-product knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (3,3), (6,1).
A complete list of sums of products of multiset partitions of the partition (5,4,3,2) is:
(2*3*4*5) = 120
(2)+(3*4*5) = 62
(3)+(2*4*5) = 43
(4)+(2*3*5) = 34
(5)+(2*3*4) = 29
(2*3)+(4*5) = 26
(2*4)+(3*5) = 23
(2*5)+(3*4) = 22
(2)+(3)+(4*5) = 25
(2)+(4)+(3*5) = 21
(2)+(5)+(3*4) = 19
(3)+(4)+(2*5) = 17
(3)+(5)+(2*4) = 16
(4)+(5)+(2*3) = 15
(2)+(3)+(4)+(5) = 14
These are all distinct, and the Heinz number of (5,4,3,2) is 1155, so 1155 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,facs[#]}]&]
A320058
Heinz numbers of spanning product-sum knapsack partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87
Offset: 1
The sequence of all spanning product-sum knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (3,1,1), (4,2), (5,1), (9), (3,3), (6,1), (4,1,1).
A complete list of products of sums of multiset partitions of the partition (3,1,1) is:
(1+1+3) = 5
(1)*(1+3) = 4
(3)*(1+1) = 6
(1)*(1)*(3) = 3
These are all distinct, and the Heinz number of (3,1,1) is 20, so 20 belongs to the sequence.
Cf.
A001970,
A056239,
A066739,
A108917,
A112798,
A292886,
A299702,
A301899,
A318949,
A319318,
A319913.
-
heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,facs[#]}]&]
Showing 1-7 of 7 results.
Comments