A320055 Heinz numbers of sum-product knapsack partitions.
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1
Keywords
Examples
A complete list of sums of products of multiset partitions of submultisets of the partition (6,6,3) is: 0 = 0 (3) = 3 (6) = 6 (3*6) = 18 (6*6) = 36 (3*6*6) = 108 (3)+(6) = 9 (3)+(6*6) = 39 (6)+(6) = 12 (6)+(3*6) = 24 (3)+(6)+(6) = 15 These are all distinct, and the Heinz number of (6,6,3) is 845, so 845 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,Join@@facs/@Divisors[#]}]&]
Comments