A320058 Heinz numbers of spanning product-sum knapsack partitions.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87
Offset: 1
Keywords
Examples
The sequence of all spanning product-sum knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (3,1,1), (4,2), (5,1), (9), (3,3), (6,1), (4,1,1). A complete list of products of sums of multiset partitions of the partition (3,1,1) is: (1+1+3) = 5 (1)*(1+3) = 4 (3)*(1+1) = 6 (1)*(1)*(3) = 3 These are all distinct, and the Heinz number of (3,1,1) is 20, so 20 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,facs[#]}]&]
Comments