A320059 Sum of divisors of n^2 that do not divide n.
0, 4, 9, 24, 25, 79, 49, 112, 108, 199, 121, 375, 169, 375, 379, 480, 289, 808, 361, 919, 709, 895, 529, 1591, 750, 1239, 1053, 1711, 841, 2749, 961, 1984, 1681, 2095, 1719, 3660, 1369, 2607, 2323, 3847, 1681, 5091, 1849, 4039, 3673, 3799, 2209, 6519, 2744, 5374
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[DivisorSigma(1, n^2) - DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Oct 05 2018
-
Maple
map(n -> numtheory:-sigma(n^2)-numtheory:-sigma(n), [$1..100]); # Robert Israel, Oct 04 2018
-
Mathematica
Table[DivisorSigma[1, n^2] - DivisorSigma[1, n], {n, 70}] (* Vincenzo Librandi, Oct 05 2018 *)
-
PARI
a(n) = sigma(n^2)-sigma(n)
-
Python
from _future_ import division from sympy import factorint def A320059(n): c1, c2 = 1, 1 for p, a in factorint(n).items(): c1 *= (p**(2*a+1)-1)//(p-1) c2 *= (p**(a+1)-1)//(p-1) return c1-c2 # Chai Wah Wu, Oct 05 2018
Formula
a(n) = sigma(n^2) - sigma(n).
a(n) = n^2 iff n is prime. - Altug Alkan, Oct 04 2018
Comments