A320105 If A001222(n) <= 2, a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p and q range over distinct primes dividing n. (See formula section for exact details.)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 11, 1, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 16, 1, 1, 2, 2, 1, 3, 1, 8, 2, 1, 1, 11, 1, 1, 1, 4, 1, 10, 1, 2, 1, 1, 1, 16, 1, 2, 2, 6, 1, 3, 1, 4, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12960
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
PARI
A320105(n) = if(bigomega(n)<=2,1,my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); (s));
-
PARI
memoA320105 = Map(); A320105(n) = if(bigomega(n)<=2,1,if(mapisdefined(memoA320105,n), mapget(memoA320105,n), my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); mapput(memoA320105,n,s); (s))); \\ Memoized version.
Formula
If A001222(n) <= 2 [when n is one, a prime or semiprime], a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p ranges over all distinct primes dividing n, and q also ranges over primes dividing n, but with condition that q > p if p is a unitary prime factor of n, otherwise q >= p. Here primepi = A000720.
Comments