cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320111 Number of divisors d of n that are not of the form 4k+2.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 6, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 6, 2, 4, 2, 4, 6, 2, 2, 8, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 8, 2, 2, 6, 6, 4, 4, 2, 4, 4, 4, 2, 9, 2, 2, 6, 4, 4, 4, 2, 8, 5, 2, 2, 8, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 10, 2, 3, 6, 6, 2, 4, 2, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2018

Keywords

Comments

Inverse Möbius transform of A152822.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, Mod[#, 4] != 2 &] &, 105] (* Michael De Vlieger, Jun 16 2020 *)
    f[2, e_] := e; f[p_, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
  • PARI
    A320111(n) = sumdiv(n,d,(2!=(d%4)));
    
  • PARI
    A320111(n) = {my(f); f = factor(n); for(i=1, #f~, if(f[i, 1]>2, f[i, 2]++)); factorback(f[,2])};
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A320111(n) = numdiv(A252463(n));
    
  • PARI
    \\ A252463 given above
    A001511(n) = 1+valuation(n,2);
    A000265(n) = (n>>valuation(n,2));
    A320111(n) = if(n<=2, 1, my(p=A252463(n)); A001511(p)*A320111(A000265(p)));
    
  • Python
    from sympy import divisor_count
    def A320111(n): return divisor_count(n if n&1 else n>>1) # Chai Wah Wu, Jul 13 2022

Formula

a(n) = Sum_{d|n, d == 0, 1 or 3 mod 4} 1.
Multiplicative with a(2^e) = e, a(p^e) = (e+1) for odd primes p.
a(2n) = A000005(n), a(2n+1) = A000005(2n+1).
a(n) = A000005(A252463(n)).
a(1) = a(2) = 1; for n > 2, a(n) = A001511(A252463(n)) * a(A000265(A252463(n))).
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 - 1/2^s + 1/4^s).
Sum_{k=1..n} a(k) ~ (3/4)*n*(log(n) + 2*gamma - 1), where gamma is Euler's constant (A001620). (End)