A320111 Number of divisors d of n that are not of the form 4k+2.
1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 6, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 6, 2, 4, 2, 4, 6, 2, 2, 8, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 8, 2, 2, 6, 6, 4, 4, 2, 4, 4, 4, 2, 9, 2, 2, 6, 4, 4, 4, 2, 8, 5, 2, 2, 8, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 10, 2, 3, 6, 6, 2, 4, 2, 6, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20160
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Matjaž Konvalinka and Vasu Tewari, Some natural extensions of the parking space, arXiv:2003.04134 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
Array[DivisorSum[#, 1 &, Mod[#, 4] != 2 &] &, 105] (* Michael De Vlieger, Jun 16 2020 *) f[2, e_] := e; f[p_, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
-
PARI
A320111(n) = sumdiv(n,d,(2!=(d%4)));
-
PARI
A320111(n) = {my(f); f = factor(n); for(i=1, #f~, if(f[i, 1]>2, f[i, 2]++)); factorback(f[,2])};
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A252463(n) = if(!(n%2),n/2,A064989(n)); A320111(n) = numdiv(A252463(n));
-
PARI
\\ A252463 given above A001511(n) = 1+valuation(n,2); A000265(n) = (n>>valuation(n,2)); A320111(n) = if(n<=2, 1, my(p=A252463(n)); A001511(p)*A320111(A000265(p)));
-
Python
from sympy import divisor_count def A320111(n): return divisor_count(n if n&1 else n>>1) # Chai Wah Wu, Jul 13 2022
Formula
a(n) = Sum_{d|n, d == 0, 1 or 3 mod 4} 1.
Multiplicative with a(2^e) = e, a(p^e) = (e+1) for odd primes p.
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 - 1/2^s + 1/4^s).
Sum_{k=1..n} a(k) ~ (3/4)*n*(log(n) + 2*gamma - 1), where gamma is Euler's constant (A001620). (End)
Comments