A320123 a(1) = 1, a(2) = 2, a(3) = 3, and for any n > 3, a(n) = the smallest positive integer not yet in the sequence such that gcd(a(n-2), a(n-1)), gcd(a(n-1), a(n)) and gcd(a(n), a(n-2)) are all distinct.
1, 2, 3, 6, 4, 9, 12, 8, 15, 10, 14, 5, 20, 16, 25, 30, 18, 27, 22, 24, 11, 33, 21, 7, 36, 28, 35, 26, 40, 13, 52, 32, 39, 42, 34, 17, 38, 68, 19, 76, 44, 55, 45, 48, 46, 23, 50, 92, 60, 51, 56, 54, 49, 63, 57, 70, 66, 65, 75, 69, 80, 72, 78, 64, 81, 84, 58
Offset: 1
Keywords
Examples
The first terms, alongside gcd(a(n-2), a(n-1)), gcd(a(n-1), a(n)) and gcd(a(n), a(n-2)), are: n a(n) gcd(a(n-2),a(n-1)) gcd(a(n-1),a(n)) gcd(a(n),a(n-2)) -- ---- ------------------ ---------------- ---------------- 1 1 N/A N/A N/A 2 2 N/A 1 N/A 3 3 1 1 1 4 6 1 3 2 5 4 3 2 1 6 9 2 1 3 7 12 1 3 4 8 8 3 4 1 9 15 4 1 3 10 10 1 5 2 11 14 5 2 1 12 5 2 1 5 13 20 1 5 2 14 16 5 4 1 15 25 4 1 5
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A320123
Crossrefs
Cf. A127202.
Programs
-
PARI
See Links section.
Comments