cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320142 Numbers that have exactly two middle divisors.

Original entry on oeis.org

6, 12, 15, 20, 24, 28, 30, 35, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 77, 80, 84, 88, 90, 91, 96, 99, 104, 108, 110, 112, 117, 126, 130, 132, 135, 140, 143, 150, 153, 154, 156, 160, 165, 168, 170, 176, 182, 187, 190, 192, 195, 198, 204, 208, 209, 210, 216, 220, 221, 224, 228, 231, 234, 238, 247, 255, 260
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2018

Keywords

Comments

Conjecture 1: numbers k with the property that the difference between the number of partitions of k into an odd number of consecutive parts and the number of partitions of k into an even number of consecutive parts is equal to 2.
Conjecture 2: numbers k with the property that symmetric representation of sigma(k) has width 2 on the main diagonal.
By the theorem in A067742 conjecture 2 is true. - Hartmut F. W. Hoft, Aug 18 2024

Examples

			15 is in the sequence because 15 has two middle divisors: 3 and 5.
On the other hand, in accordance with the first conjecture, 15 is in the sequence because there are three partitions of 15 into an odd number of consecutive parts: [15], [8, 7], [5, 4, 3, 2, 1], and there is only one partition of 15 into an even number of consecutive parts: [8, 7], therefore the difference of the number of those partitions is 3 - 1 = 2.
On the other hand, in accordance with the second conjecture, 15 is in the sequence because the symmetric representation of sigma(15) = 24 has width 2 on the main diagonal, as shown below in the fourth quadrant:
.                                _
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                          _ _ _|_|
.                      _ _| |      8
.                     |    _|
.                    _|  _|
.                   |_ _|  8
.                   |
.    _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|
.                    8
.
		

Crossrefs

Column 2 of A320051.
First differs from A001284 at a(19).
For the definition of middle divisors see A067742.

Programs

  • Mathematica
    a320142Q[k_] := Length[Select[Divisors[k], k/2<=#^2<2k&]]==2
    a320142[n_] := Select[Range[n], a320142Q]
    a320142[260] (* Hartmut F. W. Hoft, Aug 20 2024 *)