A320155 Number of series-reduced balanced rooted trees with n labeled leaves.
1, 1, 1, 4, 11, 41, 162, 1030, 7205, 55522, 442443, 3810852, 35272030, 351697516, 3735838550, 42719792640, 529195988635, 7128835815387, 103651381499810, 1610812109555323, 26489497655582729, 457497408108551450, 8248899117402701046, 154624472715479106919
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 11 rooted trees: 1 (12) (123) (1234) (12345) ((12)(34)) ((12)(345)) ((13)(24)) ((13)(245)) ((14)(23)) ((14)(235)) ((15)(234)) ((23)(145)) ((24)(135)) ((25)(134)) ((34)(125)) ((35)(124)) ((45)(123))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[sps[Sort[labs]],Length[#1]>1&]}]]; Table[Length[Select[phy2[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,7}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; while(u, v+=u; u=EulerT(u)-u); v} seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018
Formula
E.g.f. A(x) satisfies A(x) = x + A(exp(x)-x-1). - Ira M. Gessel, Nov 17 2021
Extensions
Terms a(10) and beyond from Andrew Howroyd, Oct 26 2018
Comments