A320172 Number of series-reduced balanced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.
1, 2, 5, 9, 19, 38, 79, 163, 352, 750, 1633, 3558, 7783, 17020, 37338, 81920, 180399, 398600, 885101, 1975638, 4435741, 10013855, 22726109, 51807432, 118545425, 272024659, 625488420, 1440067761, 3317675261, 7644488052, 17610215982, 40547552277, 93298838972, 214516498359, 492844378878
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 19 rooted identity trees: (1) (2) (3) (4) (5) (11) (21) (22) (32) (111) (31) (41) ((1)(2)) (211) (221) ((1)(11)) (1111) (311) ((1)(3)) (2111) ((1)(21)) (11111) ((2)(11)) ((1)(4)) ((1)(111)) ((2)(3)) ((1)(31)) ((1)(22)) ((2)(21)) ((3)(11)) ((1)(211)) ((11)(21)) ((2)(111)) ((1)(1111)) ((11)(111)) ((1)(2)(11))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m]; Table[Sum[Length[Select[gig[y],SameQ@@Length/@Position[#,_Integer]&]],{y,Sort /@IntegerPartitions[n]}],{n,8}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(u=vector(n, n, numbpart(n)), v=vector(n)); while(u, v+=u; u=WeighT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Oct 25 2018
Comments