A320174 Number of series-reduced rooted trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.
1, 3, 6, 19, 55, 200, 713, 2740, 10651, 42637, 173012, 713280, 2972389, 12514188, 53119400, 227140464, 977382586, 4229274235, 18391269922, 80330516578, 352269725526, 1550357247476, 6845517553493, 30316222112019, 134626183784975, 599341552234773, 2674393679352974
Offset: 1
Keywords
Examples
The a(1) = 1 through a(4) = 19 trees: (1) (2) (3) (4) (11) (111) (22) ((1)(1)) ((1)(2)) (1111) ((1)(11)) ((1)(3)) ((1)(1)(1)) ((2)(2)) ((1)((1)(1))) ((2)(11)) ((1)(111)) ((11)(11)) ((1)(1)(2)) ((1)(1)(11)) ((1)((1)(2))) ((2)((1)(1))) ((1)((1)(11))) ((1)(1)(1)(1)) ((11)((1)(1))) ((1)((1)(1)(1))) ((1)(1)((1)(1))) (((1)(1))((1)(1))) ((1)((1)((1)(1))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; dot[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[dot/@p]],{p,Select[mps[m],Length[#]>1&]}]]; Table[Length[Join@@Table[dot[m],{m,IntegerPartitions[n]}]],{n,10}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018
Comments