cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320174 Number of series-reduced rooted trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 19, 55, 200, 713, 2740, 10651, 42637, 173012, 713280, 2972389, 12514188, 53119400, 227140464, 977382586, 4229274235, 18391269922, 80330516578, 352269725526, 1550357247476, 6845517553493, 30316222112019, 134626183784975, 599341552234773, 2674393679352974
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(1) = 1 through a(4) = 19 trees:
  (1)  (2)       (3)            (4)
       (11)      (111)          (22)
       ((1)(1))  ((1)(2))       (1111)
                 ((1)(11))      ((1)(3))
                 ((1)(1)(1))    ((2)(2))
                 ((1)((1)(1)))  ((2)(11))
                                ((1)(111))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)(1)(11))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)((1)(11)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dot[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[dot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[dot[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018