A320179 Regular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k.
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 0, 0, 0, 0, 1, 11, 4, 0, 0, 0, 0, 0, 0, 0, 1, 13, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 23, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 3 0 0 0 0 1 3 0 0 0 0 0 1 6 1 0 0 0 0 0 1 7 1 0 0 0 0 0 0 1 11 4 0 0 0 0 0 0 0 1 13 6 0 0 0 0 0 0 0 0 1 20 16 0 0 0 0 0 0 0 0 0 1 23 23 0 0 0 0 0 0 0 0 0 0 1 33 46 0 0 0 0 0 0 0 0 0 0 The T(10,3) = 4 rooted trees: (((oo)(oo))((oo)(oooo))) (((oo)(oo))((ooo)(ooo))) (((oo)(ooo))((oo)(ooo))) (((oo)(oo))((oo)(oo)(oo)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]]; Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,14},{k,0,n-1}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); vector(n, n, Vecrev(v[n], n))} { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020