A320203 Number of sets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the set.
3, 12, 38, 110, 302, 806, 2109, 5450, 13917, 35224, 88464, 220608, 546734, 1347290, 3302716, 8057268, 19568800, 47329156, 114025658, 273709580, 654765164, 1561257760, 3711372761, 8797021430, 20794198251, 49024480496, 115292809466, 270495295124, 633186396954
Offset: 2
Keywords
Examples
a(2) = 3: {ab}, {ba}, {a,b}. a(3) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}. a(4) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A319501.
Programs
-
Maple
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i))) end: a:= n-> (k-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k))(2): seq(a(n), n=2..35);