cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A319501 Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 12, 13, 0, 2, 38, 105, 73, 0, 3, 110, 588, 976, 501, 0, 4, 302, 2811, 8416, 9945, 4051, 0, 5, 806, 12354, 59488, 121710, 111396, 37633, 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353, 0, 8, 5450, 207846, 2209276, 10096795, 23420022, 28969248, 18235680, 4596553
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2018

Keywords

Examples

			T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}.
T(4,2) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    3;
  0, 2,   12,    13;
  0, 2,   38,   105,     73;
  0, 3,  110,   588,    976,     501;
  0, 4,  302,  2811,   8416,    9945,    4051;
  0, 5,  806, 12354,  59488,  121710,  111396,   37633;
  0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353;
		

Crossrefs

Columns k=0-10 give: A000007, A000009 (for n>0), A320203, A320204, A320205, A320206, A320207, A320208, A320209, A320210, A320211.
Main diagonal gives A000262.
Row sums give A319518.
T(2n,n) gives A319519.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    T:= (n, k)-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[(-1)^i Binomial[k, i] h[n, n, k-i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 05 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A292804(n,k-i).

A320218 Number of multisets of nonempty words with a total of n letters over octonary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

394353, 18536744, 498516252, 10092149744, 171141602198, 2569517304288, 35303763087512, 453509029790240, 5527943088161719, 64619198312435832, 730123641203028584, 8021699561768649792, 86097120229812852336, 906057856878889742408, 9376575130404097999848
Offset: 8

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=8 of A257740.
Cf. A320209.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
    seq(a(n), n=8..25);
Showing 1-2 of 2 results.