cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320227 Assuming the truth of the Collatz conjecture, let T(n,i), i = 1..k be the initial k elements of the Collatz trajectory of n, up to when the first 1 appears, but excluding the 1. a(n) is the number of ordered pairs T(n,i) < T(n,j) such that gcd(T(n,i), T(n,j)) = 1.

Original entry on oeis.org

0, 0, 10, 0, 4, 11, 58, 0, 84, 4, 40, 12, 12, 62, 47, 0, 25, 89, 89, 4, 6, 43, 36, 13, 117, 13, 3395, 66, 66, 49, 3064, 0, 148, 27, 21, 94, 94, 94, 286, 4, 3246, 6, 184, 46, 42, 39, 2924, 14, 122, 122, 120, 14, 14, 3435, 3374, 70, 231, 70, 247, 51, 63, 3101
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2018

Keywords

Comments

If the number 1 of the Collatz trajectory is included, we obtain the new sequence b(n) = a(n) + A006577(n).
We observe interesting properties for the even and odd values of a(n).
First case: a(n) = 0, 4, 6, ..., 2i, ...
When a(n) = q even, there exists a subset N(q) = {n_1, n_2, ...} such that a(n_i) = q for i = 1, 2, ... We observe that N(q) = N1(q) union N2(q) (see the table below). Conjecturally, for n = 12, 14, 16, ... N1(q) is finite and the last two elements of the set N1(q) are of the form x and x+1.
The elements of N2(q) are of the form {((4^m - 1)/3)*2^k}, k = 0, 1, ... with m = a(n)/2. The set N2(q) is infinite.
Second case: a(n) = 11, 13, 15, ...
Conjecturally, N1(q) is finite and the last two elements of the set N1(q) are of the form y and y+2.
Conjecture: N2(q) = { }.
The following table gives the first 17 values of a(n) in ascending order with the corresponding subsets N1(q) and N2(q).
+----+--------------------------------------------------------------------+
|a(n)| N1(a(n)) |
+----+--------------------------------------------------------------------+
| 0 |{ } |
| 4 |{ } |
| 6 |{ } |
| 8 |{ } |
| 10 |{3} |
| 11 |{6} |
| 12 |{12, 13} |
| 13 |{24, 26} |
| 14 |{48, 52, 53} |
| 15 |{96, 104, 106} |
| 16 |{192, 208, 212, 213} |
| 17 |{384, 416, 424, 426} |
| 18 |{768, 832, 848, 852, 853} |
| 19 |{113, 1536, 1664, 1696, 1704, 706} |
| 20 |{226, 3072, 3328, 3392, 3408, 3412, 3413} |
| 21 |{35, 452, 453, 6144, 6656, 6784, 6816, 6824, 6826} |
| 22 |{70, 227, 904, 906, 12288, 13312, 13568, 13632, 13648, 13652, 13653}|
+----+--------------------------------------------------------------------+
+----+--------------------------------------------------------------------+
|a(n)| N2(a(n)) |
+----+--------------------------------------------------------------------+
| 0 |{1, 2, 4, 8, 16, 32, ..., 2^k, ... } (A000079) |
| 4 |{5, 10, 20, 40, 80, ..., 5*2^k, ...} (A020714) |
| 6 |{21, 42, 84, 168, 336, 672, ..., ((4^3 - 1)/3)*2^k, ...} (A175805) |
| 8 |{85, 170, 340, 680, ..., ((4^4 - 1)/3)*2^k, ...} |
| 10 |{341, 682, 1364, 2728, ..., ((4^5 - 1)/3)*2^k, ...} |
| 11 | { } |
| 12 |{1365, 2730, 5460, ...,((4^6 - 1)/3)*2^k, ...} |
| 13 | { } |
| 14 |{5461, 10922, ..., ((4^7 - 1)/3)*2^k, ...} |
| 15 | { } |
| 16 |{21845, 43690, ...,((4^8 - 1)/3)*2^k, ...} |
| 17 | { } |
| 18 |{87381, 174762, ...,((4^9 - 1)/3)*2^k, ...} |
| 19 | { } |
| 20 |{349525, 699050, ..., ((4^10 - 1)/3)*2^k, ...} |
| 21 | { } |
| 22 |{1398101, 2796202, ..., ((4^11 - 1)/3)*2^k, ...} |
+----+--------------------------------------------------------------------+

Examples

			a(3) = 10 because the Collatz trajectory T(3,i) of 3 up to the number 1 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2  and gcd(T(i), T(j)) = 1 for the 10 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 8) and (5, 16). 28
In the general case, a(n) = 10 for n in the set {3} union {341, 682, 1364, 2728, ...,((4^5 - 1)/3)*2^k, ...} with k = 0, 1, 2, ...
a(6) = 11 because the Collatz trajectory T(6,i) of 6 up to the number 1 is 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2  and gcd(T(i), T(j)) = 1 for the 11 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 6), (5, 8) and (5, 16).
		

Crossrefs

Programs

  • Maple
    nn:=1000:
    for n from 1 to 200 do:
       m:=n:lst:={}:
          for i from 1 to nn while(m<>1) do:
            if irem(m, 2)=0
             then
             lst:=lst union {m}:m:=m/2:
             else
             lst:=lst union {m}:m:=3*m+1:
           fi:
         od:
        n0:=nops(lst):it:=0:
         for j from 1 to n0-1 do:
          for k from j+1 to n0 do:
           if gcd(lst[j],lst[k])=1
           then
            it:=it+1:
            else fi:
        od:
        od:
      printf(`%d, `,it):
    od:

Extensions

Definition revised by N. J. A. Sloane, Nov 12 2018