A320252 Numbers with prime factorization Product_{k=1..w} prime(i_k) ^ e_k (where w = A001221(n) and prime(i) denotes the i-th prime number) such that i_k <> e_k for k = 1..w and { i_1, ..., i_w } = { e_1, ..., e_w }.
1, 12, 40, 112, 352, 540, 600, 675, 832, 2176, 2268, 2352, 3969, 4864, 10692, 11616, 11776, 27440, 29403, 29696, 32448, 35000, 37908, 63488, 75600, 105840, 110976, 113400, 123201, 148716, 151552, 158760, 212960, 214375, 237600, 275000, 277248, 335872, 411600
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding permutations, are: n a(n) s -- ------ ---------- 1 1 () 2 12 (1 2) 3 40 (1 3) 4 112 (1 4) 5 352 (1 5) 6 540 (1 2 3) 7 600 (1 3 2) 8 675 (2 3) 9 832 (1 6) 10 2176 (1 7) 11 2268 (1 2 4) 12 2352 (1 4 2) 13 3969 (2 4) 14 4864 (1 8) 15 10692 (1 2 5) 16 11616 (1 5 2) 17 11776 (1 9) 18 27440 (1 4 3) 19 29403 (2 5) 20 29696 (1 10) 21 32448 (1 6 2) 22 35000 (1 3 4) 23 37908 (1 2 6) 24 63488 (1 11) 25 75600 (1 4)(2 3)
Programs
-
PARI
is(n) = my (f=factor(n), i=apply(primepi, f[,1]~), e=f[,2]~); #select(k -> i[k]==e[k], [1..#f~])==0 && Set(i) == Set(e)
Comments