A320268 Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.
1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1
Keywords
Examples
The a(3) = 1 through a(8) = 9 rooted trees: (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (oo(oo)) (oo(ooo)) (oo(oooo)) (ooo(oo)) (ooo(ooo)) ((oo)(oo)) (oooo(oo)) (o(o(oo))) (o(o(ooo))) (o(oo)(oo)) (o(oo(oo))) (oo(o(oo)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}]; Array[saum,20]
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
Formula
a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).
Comments