A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).
1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1
Keywords
Examples
The sequence of rooted trees together with their Matula-Goebel numbers begins: 1: o 4: (oo) 8: (ooo) 14: (o(oo)) 16: (oooo) 28: (oo(oo)) 32: (ooooo) 38: (o(ooo)) 49: ((oo)(oo)) 56: (ooo(oo)) 64: (oooooo) 76: (oo(ooo)) 86: (o(o(oo))) 98: (o(oo)(oo)) 106: (o(oooo)) 112: (oooo(oo)) 128: (ooooooo) 152: (ooo(ooo)) 172: (oo(o(oo))) 196: (oo(oo)(oo))
Links
Crossrefs
The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]
Extensions
Updated with corrected terminology by Gus Wiseman, Feb 06 2020
Comments