cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320270 Number of unlabeled balanced semi-binary rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 19, 25, 35, 46, 65, 88, 124, 171, 242, 334, 470, 653, 921, 1287, 1822, 2565, 3640, 5144, 7311, 10360, 14734, 20918, 29781, 42361, 60389, 86069, 122893, 175479, 250922, 358863
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2, and balanced if all leaves are the same distance from the root. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			The a(1) = 1 through a(7) = 6 balanced semi-binary rooted trees:
  o  (o)  (oo)   ((oo))   (((oo)))   ((o)(oo))    ((oo)(oo))
          ((o))  (((o)))  ((o)(o))   ((((oo))))   (((o)(oo)))
                          ((((o))))  (((o)(o)))   (((((oo)))))
                                     (((((o)))))  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    saur[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[saur/@ptn]],SameQ@@Length/@Position[#,{}]&],{ptn,Select[IntegerPartitions[n-1],Length[#]<=2&]}]];
    Table[Length[saur[n]],{n,20}]