A320270 Number of unlabeled balanced semi-binary rooted trees with n nodes.
1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 19, 25, 35, 46, 65, 88, 124, 171, 242, 334, 470, 653, 921, 1287, 1822, 2565, 3640, 5144, 7311, 10360, 14734, 20918, 29781, 42361, 60389, 86069, 122893, 175479, 250922, 358863
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 6 balanced semi-binary rooted trees: o (o) (oo) ((oo)) (((oo))) ((o)(oo)) ((oo)(oo)) ((o)) (((o))) ((o)(o)) ((((oo)))) (((o)(oo))) ((((o)))) (((o)(o))) (((((oo))))) (((((o))))) ((((o)(o)))) (((o))((o))) ((((((o))))))
Links
- Gus Wiseman, The a(13) = 35 balanced semi-binary rooted trees.
- Gus Wiseman, The a(15) = 65 balanced semi-binary rooted trees.
- Gus Wiseman, The a(16) = 88 balanced semi-binary rooted trees.
- Gus Wiseman, The a(18) = 171 balanced semi-binary rooted trees.
Programs
-
Mathematica
saur[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[saur/@ptn]],SameQ@@Length/@Position[#,{}]&],{ptn,Select[IntegerPartitions[n-1],Length[#]<=2&]}]]; Table[Length[saur[n]],{n,20}]
Comments