A320275 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
2, 3, 7, 9, 13, 19, 27, 37, 49, 53, 61, 81, 89, 91, 113, 131, 151, 169, 223, 243, 247, 251, 281, 299, 311, 343, 359, 361, 377, 427, 463, 503, 593, 611, 637, 659, 689, 703, 719, 729, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1183, 1291, 1321, 1339
Offset: 1
Keywords
Examples
The sequence of multisystems whose MM-numbers belong to the sequence begins: 2: {{}} 3: {{1}} 7: {{1,1}} 9: {{1},{1}} 13: {{1,2}} 19: {{1,1,1}} 27: {{1},{1},{1}} 37: {{1,1,2}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 61: {{1,2,2}} 81: {{1},{1},{1},{1}} 89: {{1,1,1,2}} 91: {{1,1},{1,2}} 113: {{1,2,3}} 131: {{1,1,1,1,1}} 151: {{1,1,2,2}} 169: {{1,2},{1,2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
Comments