A320293 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n with no 1's.
0, 1, 1, 3, 3, 9, 11, 30, 45, 112, 195, 475, 901, 2136, 4349, 10156, 21565, 50003, 109325, 252761, 563785, 1303296, 2948555, 6826494, 15604053, 36210591, 83415487, 194094257, 449813607, 1049555795, 2444027917, 5718195984, 13367881473, 31357008065, 73546933115
Offset: 1
Keywords
Examples
The a(2) = 1 through a(7) = 11 trees: (2) (3) (4) (5) (6) (7) (22) (32) (33) (43) ((2)(2)) ((2)(3)) (42) (52) (222) (322) ((2)(4)) ((2)(5)) ((3)(3)) ((3)(4)) ((2)(22)) ((2)(23)) ((2)(2)(2)) ((3)(22)) ((2)((2)(2))) ((2)(2)(3)) ((2)((2)(3))) ((3)((2)(2)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
Extensions
Terms a(23) and beyond from Andrew Howroyd, Oct 25 2018
Comments