A320314 a(n) is the number of symmetric domino towers with n bricks.
1, 1, 3, 3, 7, 9, 19, 25, 53, 71, 149, 203, 423, 583, 1209, 1681, 3473, 4863, 10017, 14107, 28987, 41019, 84113, 119513, 244645, 348829, 712987, 1019731, 2081547, 2985097, 6086375, 8749185, 17820657, 25671983, 52241825, 75402907, 153316715, 221673707, 450393329, 652234089
Offset: 1
Keywords
Examples
For n = 4, the a(4) = 3 symmetric stacks are +-------+ | | +---+---+---+---+ | | | +---+---+---+---+, | | +-------+ +-------+ +-------+ | | | | +---+---+---+---+---+---+, and | | | +-------+-------+ +-------+-------+-------+-------+ | | | | | +-------+-------+-------+-------+.
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 25-27.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Peter Kagey, Symmetric Brick Stacking, Mathematics Stack Exchange.
Programs
-
PARI
seq(n)={my(h=(1 - x^2 - sqrt(1-2*x^2-3*x^4 + O(x^3*x^n)))/(2*x^2)); Vec((x + 2*x*h + h)/((1-x*h)*(1-h)))} \\ Andrew Howroyd, Mar 12 2021
Formula
G.f.: (x + 2*x^3*M(x^2) + x^2*M(x^2))/((1-x^3*M(x^2))*(1-x^2*M(x^2))) where M(x) is the g.f. of A001006. - Andrew Howroyd, Mar 12 2021
Extensions
a(20)-a(40) from Andrew Howroyd, Oct 25 2018
Comments