A320315 Number of weakly unimodal compositions of n in which the greatest part occurs exactly four times.
1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 46, 62, 87, 116, 160, 212, 288, 380, 508, 666, 883, 1150, 1508, 1954, 2542, 3274, 4229, 5416, 6949, 8856, 11292, 14320, 18162, 22922, 28921, 36344, 45641, 57112, 71407, 88998, 110816, 137600, 170665
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Wikipedia, Unimodality, Unimodal function
Crossrefs
Column k=4 of A247255.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i>n, 0, `if`(4*i=n, 1, 0)+add(b(n-i*j, i+1)*(j+1), j=0..n/i)) end: a:= n-> `if`(n=0, 1, b(n, 1)): seq(a(n), n=0..70);
-
Mathematica
b[n_, i_] := b[n, i] = If[i > n, 0, If[4 i == n, 1, 0] + Sum[b[n - i j, i + 1] (j + 1), {j, 0, n/i}]]; a[n_] := If[n == 0, 1, b[n, 1]]; a /@ Range[0, 70] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
Formula
G.f.: Sum_{n>=0} x^(4*n) / Product_{j=1..n-1} (1-x^j)^2.
a(n) ~ Pi^3 * exp(2*Pi*sqrt(n/3)) / (2^5 * 3^(5/4) * n^(11/4)). - Vaclav Kotesovec, Oct 24 2018