cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320315 Number of weakly unimodal compositions of n in which the greatest part occurs exactly four times.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 46, 62, 87, 116, 160, 212, 288, 380, 508, 666, 883, 1150, 1508, 1954, 2542, 3274, 4229, 5416, 6949, 8856, 11292, 14320, 18162, 22922, 28921, 36344, 45641, 57112, 71407, 88998, 110816, 137600, 170665
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2018

Keywords

Crossrefs

Column k=4 of A247255.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(4*i=n, 1, 0)+add(b(n-i*j, i+1)*(j+1), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..70);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i > n, 0, If[4 i == n, 1, 0] +
         Sum[b[n - i j, i + 1] (j + 1), {j, 0, n/i}]];
    a[n_] :=  If[n == 0, 1, b[n, 1]];
    a /@ Range[0, 70] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=0} x^(4*n) / Product_{j=1..n-1} (1-x^j)^2.
a(n) ~ Pi^3 * exp(2*Pi*sqrt(n/3)) / (2^5 * 3^(5/4) * n^(11/4)). - Vaclav Kotesovec, Oct 24 2018