A320316 Number of weakly unimodal compositions of n in which the greatest part occurs exactly five times.
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 32, 44, 58, 79, 103, 138, 180, 237, 307, 402, 517, 670, 859, 1104, 1407, 1799, 2280, 2896, 3656, 4616, 5801, 7291, 9120, 11407, 14215, 17701, 21971, 27252, 33699, 41637, 51314, 63170, 77590, 95202
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Wikipedia, Unimodality, Unimodal function
Crossrefs
Column k=5 of A247255.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i>n, 0, `if`(5*i=n, 1, 0)+add(b(n-i*j, i+1)*(j+1), j=0..n/i)) end: a:= n-> `if`(n=0, 1, b(n, 1)): seq(a(n), n=0..70);
-
Mathematica
b[n_, i_] := b[n, i] = If[i > n, 0, If[5 i == n, 1, 0] + Sum[b[n - i j, i + 1] (j + 1), {j, 0, n/i}]]; a[n_] := If[n == 0, 1, b[n, 1]]; a /@ Range[0, 70] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)
Formula
G.f.: Sum_{n>=0} x^(5*n) / Product_{j=1..n-1} (1-x^j)^2.
a(n) ~ Pi^4 * exp(2*Pi*sqrt(n/3)) / (16 * 3^(7/4) * n^(13/4)). - Vaclav Kotesovec, Oct 24 2018