A320348 Number of partition into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a_3, ... , a_{m-1} - a_m, a_m are different.
1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 9, 7, 13, 12, 13, 16, 22, 17, 28, 28, 31, 36, 50, 45, 63, 62, 74, 78, 102, 92, 123, 123, 146, 148, 191, 181, 228, 233, 280, 283, 348, 350, 420, 437, 518, 523, 616, 641, 727, 774, 884, 911, 1038, 1102, 1240, 1292, 1463, 1530, 1715, 1861, 2002
Offset: 1
Keywords
Examples
n = 9 [9] ********* a_1 = 9. ooooooooo ------------------------------------ [8, 1] * a_2 = 1. *******o a_1 - a_2 = 7. oooooooo ------------------------------------ [7, 2] ** a_2 = 2. *****oo a_1 - a_2 = 5. ooooooo ------------------------------------ [5, 4] **** a_2 = 4. *oooo a_1 - a_2 = 1. ooooo ------------------------------------ a(9) = 4. From _Gus Wiseman_, May 04 2019: (Start) The a(1) = 1 through a(11) = 9 strict partitions with distinct differences (where the last part is taken to be 0) are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A325388. (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (31) (32) (51) (43) (53) (54) (64) (65) (41) (52) (62) (72) (73) (74) (61) (71) (81) (82) (83) (91) (92) (631) (A1) (632) (641) (731) The a(1) = 1 through a(10) = 6 partitions covering an initial interval of positive integers with distinct multiplicities are the following. The Heinz numbers of these partitions are given by A325326. 1 11 111 211 221 21111 2221 22211 22221 222211 1111 2111 111111 22111 221111 2211111 322111 11111 211111 2111111 21111111 2221111 1111111 11111111 111111111 22111111 211111111 1111111111 The a(1) = 1 through a(10) = 6 partitions whose multiplicities cover an initial interval of positive integers and are distinct are the following (A = 10). The Heinz numbers of these partitions are given by A325337. (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (211) (221) (411) (322) (332) (441) (433) (311) (331) (422) (522) (442) (511) (611) (711) (622) (811) (322111) (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..500 (terms 1..100 from Seiichi Manyama)
- Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[Append[#,0]]&]],{n,30}] (* Gus Wiseman, May 04 2019 *)
Comments