A320354 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 16, 45, 96, 175, ... 0, 21, 416, 2835, 11904, 37625, ... 0, 315, 33280, 722925, 7428096, 48724375, ... 0, 9765, 8053760, 739552275, 23205371904, 378832015625, ...
Crossrefs
Programs
-
Mathematica
Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
Formula
G.f. of column k: Sum_{i>=0} k^(i*(i+1)/2)*x^i / Product_{j=0..i} (1 + k^j*x).
For asymptotics of column k see comment from Vaclav Kotesovec in A027880.