cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320354 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2018

Keywords

Examples

			Square array begins:
  1,     1,        1,          1,            1,             1,  ...
  0,     1,        2,          3,            4,             5,  ...
  0,     3,       16,         45,           96,           175,  ...
  0,    21,      416,       2835,        11904,         37625,  ...
  0,   315,    33280,     722925,      7428096,      48724375,  ...
  0,  9765,  8053760,  739552275,  23205371904,  378832015625,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten

Formula

G.f. of column k: Sum_{i>=0} k^(i*(i+1)/2)*x^i / Product_{j=0..i} (1 + k^j*x).
For asymptotics of column k see comment from Vaclav Kotesovec in A027880.