A320356 Number of strict connected antichains of multisets whose multiset union is an integer partition of n.
1, 1, 2, 3, 5, 8, 13, 22, 35, 62, 98, 171, 277
Offset: 0
Examples
The a(1) = 1 through a(6) = 13 clutters: {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} {{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1,5}} {{1,1,1}} {{2,2}} {{2,3}} {{2,4}} {{1,1,2}} {{1,1,3}} {{3,3}} {{1,1,1,1}} {{1,2,2}} {{1,1,4}} {{1,1,1,2}} {{1,2,3}} {{1,1,1,1,1}} {{2,2,2}} {{1,1},{1,2}} {{1,1,1,3}} {{1,1,2,2}} {{1,1,1,1,2}} {{1,1},{1,3}} {{1,1,1,1,1,1}} {{1,2},{1,1,1}}
Links
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]