A320372 Number of parts in all partitions of n with largest multiplicity two.
2, 0, 5, 6, 9, 13, 23, 30, 44, 58, 85, 108, 149, 191, 258, 326, 425, 532, 688, 852, 1082, 1331, 1670, 2042, 2531, 3068, 3771, 4554, 5543, 6653, 8051, 9607, 11543, 13722, 16377, 19390, 23023, 27132, 32073, 37660, 44303, 51834, 60744, 70813, 82666, 96082, 111759
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..5000
Crossrefs
Column k=2 of A213177.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) end: a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(2): seq(a(n), n=2..60);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[ Function[l, {0, l[[1]]*j} + l][b[n - i j, i-1, k]], {j, 0, Min[n/i, k]}]]]; a[n_] := With[{k = 2}, (b[n, n, k] - b[n, n, k - 1])[[2]]]; a /@ Range[2, 60] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)
Formula
a(n) ~ log(3) * exp(2*Pi*sqrt(n)/3) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Oct 25 2018